考虑如下问题{-△u=uN+2/N-2+εf(x)u,x∈(R)N,u∈D1,2((R)N),u(x)→0,|x|→∞,这里ε是正常数,f(x)∈L∞(RN),N为大于3的正整数.该文应用扰动方法证明了在f(x)适合一定条件下,存在ε0,只要0<ε<ε0,上述问题存在多个解.
In this paper, we consider the following problem {-△u=uN+2/N-2+εf(x)u,x∈(R)N,u∈D1,2((R)N),u(x)→0,|x|→∞, where ∈ is a positive constant,f(x)∈L∞(RN),Used perturbation method, we provethat under some conditions on f(x), there exists a ε0 0〈ε〈ε0,such that there are manysolutions for above problem.