运用扰动方法证明了如下一类具有特殊非线性项的椭圆型方程{-Δu=(1+εg(x))(u-1)p+,1〈p〈N+2/N-2,x∈R N, u∈D 1,2 (R N),u(x)→0,|x|→∞. 在g(x)∈L ∞(R N),且g(x)≥0,lim |x|→∞ g (x)=0,则存在正数ε0,当ε∈(0,ε0)时,至少有一个弱解存在。
In the paper,we use the perturbation variation method to study the following problem :{-Δu=(1+εg(x))(u-1)p+,1〈p〈N+2/N-2,x∈R N, u∈D 1,2 (R N),u(x)→0,|x|→∞. We prove that if g(x)∈L ∞(R N),且g(x)≥0,lim |x|→∞ g (x)=0,then there is a positive constant eo, such that for any eE (O,eo), the above problem has at least one weak solution.