运用集中紧致原理、变分方法以及局部极值方法,研究广义Choquard-Pekar方程-△u+a(x)u=∫RNQ(X,Y)u2(y)dy/|x|h|x-y|r-2h|y|h·u(x)+g(x),x∈RN.作者得到一定条件下这类问题的两个非负解的存在性.其中一个解是通过局部极小得到的,另一个是运用山路引理得到的.
In the paper, we used variational method to study the generalized Choquard-Pekar equation on IRN. We get that there exists two non-negative solutions for our problem, one solution is a local minimum and the other is of the mountain pass type.