单程波算子的可分近似形式是关于空间变量和波数变量的函数,这使得快速傅里叶变换的利用成为可能,从而极大提高了计算效率。从函数近似的角度来看,最优可分近似方法与其他几种可分近似方法一样都具有单程波算子可分表达的形式,但最优可分近似方法是其中唯一的函数整体近似的方法,这就造成了该方法在相位误差曲线、脉冲响应、模型偏移结果上表现出与其他可分近似方法不一样的特征:该方法精度较高,且随着阶数的增大,对速度变化的敏感度降低。
An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.