位置:成果数据库 > 期刊 > 期刊详情页
First-principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr
  • ISSN号:1674-4926
  • 期刊名称:《半导体学报:英文版》
  • 时间:0
  • 分类:TQ630.49[化学工程—精细化工] TQ134.11[化学工程—无机化工]
  • 作者机构:[1]School of Science, Hubei University of Technology, Wuhan 430068, China, [2]School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China, [3]Hubei Collaborative Innovation Center for High-Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Nos. 51102150, 51202064), the National Post-Doctoral Science Foundation of China (No. 201104085), and the Chutian Scholar Program (No. GCRC 13014).
中文摘要:

An effective compensated codoping approach is described to modify the photoelectrochemical properties of anatase Ti O2 by doping with nonmetals(N or C) and transition metals(V or Cr) impurities. Here, compensated codoped Ti O2 systems are constructed with different dopant species and sources, and then their dopant formation energies and electronic structures are performed to study the stability and visible-light photoactivity by first-principles plane-wave ultrasoft pseudopotential calculations, respectively. The calculated results demonstrate that the codoping with transition metals facilitates the enhancement of the concentration of p-type dopants(N and C) in a host lattice. Especially, compensated codoping not only reduces the energy gap, to enhance the optical absorption, and eliminate the local trapping, to improve carrier mobility and conversion efficiency, but it also keeps the oxidation-reduction potential of the conduction band edge. These results are conducive to the understanding of the synergistic mechanism of the photocatalytic activity of Ti O2 that is enhanced by codoping.

英文摘要:

An effective compensated codoping approach is described to modify the photoelectrochemical prop- erties of anatase TiO2 by doping with nonmetals (N or C) and transition metals (V or Cr) impurities. Here, com- pensated codoped TiO2 systems are constructed with different dopant species and sources, and then their dopant formation energies and electronic structures are performed to study the stability and visible-light photoactivity by first-principles plane-wave ultrasoft pseudopotential calculations, respectively. The calculated results demonstrate that the codoping with transition metals facilitates the enhancement of the concentration of p-type dopants (N and C) in a host lattice. Especially, compensated codoping not only reduces the energy gap, to enhance the optical ab sorption, and eliminate the local trapping, to improve carrier mobility and conversion efficiency, but it also keeps the oxidation-reduction potential of the conduction band edge. These results are conducive to the understanding of the synergistic mechanism of the photocatalytic activity of TiO2 that is enhanced by codoping.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《半导体学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国电子学会 中国科学院半导体研究所
  • 主编:李树深
  • 地址:北京912信箱
  • 邮编:100083
  • 邮箱:cjs@semi.ac.cn
  • 电话:010-82304277
  • 国际标准刊号:ISSN:1674-4926
  • 国内统一刊号:ISSN:11-5781/TN
  • 邮发代号:2-184
  • 获奖情况:
  • 90年获中科院优秀期刊二等奖,92年获国家科委、中共中央宣传部和国家新闻出版署...,97年国家科委、中共中央中宣传部和国家新出版署三等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:7754