位置:成果数据库 > 期刊 > 期刊详情页
基于置信度策略选择的实时目标跟踪方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西南交通大学信息科学与技术学院,成都611756
  • 相关基金:国家自然科学基金资助项目(61003143);四川省科技支撑计划资助项目(2012FZ0004)
中文摘要:

目标跟踪一直是计算机视觉领域研究的热点和难点,受自然场景中复杂干扰因素影响,现有方法的速度和精度尚待改善。首先对基于颜色属性的目标跟踪算法进行改进,使之更为鲁棒且速度达到实时;接下来,针对被跟踪目标发生遮挡时,采用基于颜色属性的跟踪算法导致错误累积进而产生漂移甚至跟踪失败的问题,引入运算量较大但对遮挡有较强抵抗能力的稀疏协作表观模型。为了同时保证算法的速度和准确性,构建了一套基于跟踪结果置信度评价的策略选择机制,将两种算法有机整合。在多个公开数据集下的对比实验显示,与现有跟踪算法相比,该方法在跟踪效果和速度上具有较显著优势,并在目标存在严重遮挡、光照变化、运动模糊等情况时,均可以取得较好的跟踪效果。

英文摘要:

Target tracking has always been one of the hot and difficult topics in computer vision. Due to the influences of complicated interference factors in natural scenes, the speed and accuracy of the existing target tracking methods are still to be im- proved. Firstly, this paper enhanced the color attribution based target tracking algorithm and made it be robust and real-time. Next, it introduced sparse collaborative appearance model to deal with the problem of error accumulation which caused drifting or even tracking failure when the object was occluded. In order to achieve fast and accurate tacking, it proposed an adaptive strategy selection mechanism to integrate the two algorithms through confidence evaluation of the tracking results. Experimental results on multiple public datasets show that, compared with the existing object tracking algorithms,the proposed method is accurate and fast. It performs well in regard of serious occlusion,illumination variation and motion blur.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049