位置:成果数据库 > 期刊 > 期刊详情页
基于深度卷积神经网络的车型识别研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西南交通大学信息科学与技术学院,成都610031
  • 相关基金:国家自然科学基金资助项目(61003143);四川省科技支撑计划资助项目(2012FZ0004)
作者: 邓柳, 汪子杰
中文摘要:

近年来,深度学习中的卷积神经网络已经广泛运用于图像识别领域,它不仅显著提升了识别准确率,同时在特征提取速度方面也优于许多传统方法。针对高速公路环境下的车型识别问题,引入卷积神经网络(CNNs)理论,设计相应特征提取算法,并结合SVM分类器构建识别系统。通过对高速公路上主要三种车型(小车、客车、货车)的分类实验显示,该方法在识别精度及速度上均取得了较显著的提高。

英文摘要:

In recent years,the deep convolution neural network( CNN),a state-of-the-art deep learning method,has been widely used in the field of image recognition. It can not only significantly improve the recognition accuracy,but also superior to many traditional algorithms in terms of feature extraction speed. This paper firstly introduced the CNN for the highway vehicle recognition. It constructed a vehicle recognition system by using a proposed deep CNN based feature extraction method and the SVM classifier. The classification results of three major types of vehicles( cars,buses,trucks) on the highway show that significant improvements are achieved in both classification accuracy and speed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049