位置:成果数据库 > 期刊 > 期刊详情页
基于级联卷积神经网络的视频动态烟雾检测
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西南交通大学信息科学与技术学院成都610031
  • 相关基金:国家自然科学基金(61003143,61202191)
中文摘要:

复杂场景中烟雾特性的提取是目前视频烟雾检测领域的主要挑战。针对该问题,提出一种静态和动态特征结合的卷积神经网络视频烟雾检测框架。在静态单帧图像特征检测的基础上,进一步分析其时空域上的动态纹理信息以期克服复杂的环境干扰。实验结果显示,该级联卷积神经网络模型可有效应用于复杂视频场景中烟雾事件的实时检测。

英文摘要:

The extraction of stable smoke features in complex scenes is a challenging task for video based smoke detection. For this issue, a convolutional neural network (CNN) framework which employs both static and dynamic features of the smoke is proposed. On the basis of analyzing the static features of individual frame, we further explore the dynamic features in spatial-temporal domain to reduce the influence of the noise from environment. Experimental results show that the proposed cascaded convolutional neural network framework performs well in real-time video based smoke detection for complex scenes.

同期刊论文项目
期刊论文 14 会议论文 5 获奖 1
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314