本文研究了零级的亚纯函数的q-差分多项式的值分布.利用Nevanlinna理论,得到了以下结果.设f是零级的超越亚纯函数,m是非负整数,q,a,c∈C/{0},b∈C,α(z)是f(z)的小函数.如果f(qz+c)-f(z)≡0,n≥5,则f(z)n(f(z)m-a)[f(qz+c)-f(z)]-α(z)和f(z)n+a[f(qz+c)-f(z)]-b有无穷多个零点.该结果改进了定理D中的n≥7和定理E中的n≥8.
In this paper, we investigate the value distribution of q-shift difference polynomials of meromorphic function with zero order. By using the Nevanlinna theory, we obtain the following result. Let f be a transcendental meromorphic function with zero order, m be a non-negative integer, q, a, c ∈ C /{0}, b ∈ C, α(z) be a small function of f(z). If f(qz + c)- f(z) ≡ 0, n ≥ 5, then both f(z)n(f(z)m- a)[f(qz + c)- f(z)]- α(z) and f(z)n+ a[f(qz + c)- f(z)]- b have infinitely many zeros, which improve the conditions n ≥ 7 of Theorem D and n ≥ 8 of Theorem E.