设gl(m|n)是一般线性李超代数,g是它的子代数,g是g的对偶空间。定义了g在9上的余伴随作用,使其成为g-模,同时证明了gl(m|n)中存在子空间W是g-模,并且同构于g。
Let gl(m| n) be the general linear Lie superalgebra, g be its subalgebra and g be the dual space of g. In this paper, the coadjoint action of g on g is defined, making g into a g-module, and it is proved that there exists a subspace W in gll(m| n), which is a g-module and isomorphic to g.