设M(∞)是C上所有无限阶矩阵构成的向量空间,gl(∞)是M(∞)的一个特殊子空间,关于括积运算gl(∞)是一个李代数.对gl(∞)的李子代数g,令g*是g的对偶空间,g+是g的受限对偶空间.定义了g在g*上的余伴随作用,使其成为g-模,g+是g*的g-子模.证明了gl(∞)中存在子空间W,作为g-模,它与g+同构.
Let M(∞) be the vector space of all the infinite matrices on C,gl(∞) is a special subspace of M(∞).Product and bracket are defined on gl(∞),and it is proved that gl(∞) is a Lie Algebra over C.Let g be the Lie subalgebra of gl (∞),g* be the dual space of g and g+ be the limited dual space of g.The coadjoint action of g on g* is defined,making g* into g-module,and g+ is a g-submodule of g*.It is proved that there exits a subspace W of gl(∞),which is a g-module and isomorphic to g+.