在紧的伪度量空间(X,d)上,论证了支撑在(X,d)上的加倍测度的存在性与(X,d)上的一致度量维数之间的一些相互关系;并证明了若(X,d)有有限的一致度量维数,则对任意α〉0,存在(X,d)上的加倍测度在某个Hausdorff维数最多为α的集上满测.
On a compact pseudo - metric space ( X, d ), proved there are some relationships between the existence of doubling measure and unite metric dimension on ( X, d ), and also proved that for any α 〉 0 , there exists a doubling measure has full measure on a set of Hausforff dimension at most α.