利用quiver方法确定了一个广义Taft代数具有拟三角Hopf结构当且仅当它是Sweedler4维Hopf代数.用不同于文[15]的方法,对任意的正整数n,构造出一类拟三角Hopf代数H(n).
By using the quiver technique it is proved that a generalized Taft algebra admits a quasitriangular Hopf structure if and only if it is Sweedler's 4dimensional Hopf algebra. Using different methods from [15]. Also a class of quasitriangular Hopf algebras H(n) via quivers, for each positive integer n, is gived.