位置:成果数据库 > 期刊 > 期刊详情页
基于GM(1,1)灰色预测模型的改进与应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:鲁东大学数学与统计科学学院,山东烟台264025
  • 相关基金:国家自然科学基金(No.11371183,No.11271050); 山东省统计科研重点课题(No.KT15044)
中文摘要:

针对传统的GM(1,1)模型预测精度不高,并且其求解优化与多项式拟合各有片面性的缺点,给出了基于求解优化和多项式拟合优化相结合的改进灰色等维动态预测方法。结合美国近两百年人口的相关统计数据,利用传统的GM(1,1)模型及其优化后的模型进行误差比较。结果表明改进后的灰色模型预测精度更高,说明改进后的灰色预测模型的可行性与可靠性更好。

英文摘要:

In view of the traditional GM(1,1) model prediction accuracy is not high,additionally its solving method optimizing and polynomial fitting both have the one-sided ness problem,this paper presents the grey dynamic equal dimension forecasting method based on solving method optimizing and polynomial fitting. Then according to the the statistical data of population in the United States in nearly two hundred years,it can compare the error by the method of using the traditional GM(1,1) model and its optimization model. The results show that the improved grey model has higher prediction accuracy,indicating that the improved grey forecasting model with the better reliability and feasibility.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887