位置:成果数据库 > 期刊 > 期刊详情页
支持多约束的K-匿名化方法
  • 期刊名称:软件学报.17(5): 1222-1232. 2006. EI: 06289996325
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,辽宁沈阳110004
  • 相关基金:Supported bv the National Natural Science Foundation of China under Grant Nos.60503036,60573090(国家自然科学基金);the University Key Teacher Award Program for Outstanding Young Teachers in HighEducationInstitute ofthe Ministry of Education of China(教育部高等学校优秀青年教师教学科研奖励计划基金);the Natural Science Foundation for Doctoral Career of Liaoning Province of China under Grant No.20041016(辽宁省博士科研启动项目);the National Research Foundation for the Doctoral Program of the Ministry of Education under Grant Nos.20030145029(教育部博士点基金)
  • 相关项目:以数据为中心的无线传感器网络查询处理与查询优化技术研究
中文摘要:

K-匿名化(K-anonymization)是数据发布环境下保护数据隐私的一种重要方法.目前,K-匿名化方法主要针对单一约束条件进行处理,而实际应用中涉及到大量的多约束条件,使K-匿名化问题更加复杂.如果简单地将单一约束K-匿名化方法应用到多约束情况,会造成大量的信息损失及过低的处理效率.根据多约束之间的关系,通过继承Classfly算法的元组概括过滤思想,提出多约束K-匿名化方法Classfly+及相应的3种算法,包括朴素算法、完全IndepCSet算法和部分IndepCSet的Classfly+算法.实验结果显示,Classfly+能够很好地降低多约束K-匿名化的信息损失,改善匿名化处理的效率.

英文摘要:

K-Anonymization is an important approach to protect data privacy in data publishing scenario. Existing approaches mainly consider data processing with single constraint. There exist multiple constraints cases in the real applications, which makes the K-anonymization more complex. Simply applying the approaches with single constraint to the problem of multiple constraints may cause high information loss and low efficiency. Based on the idea of Classfly, a family of multiple constraints supported K-anonymization approaches named Classfly^+ are proposed according to the features of mutiple constraints. Three K-anonymization approaches are proposed, which are naive approach, complete IndepCSet, and partial IndepCSet Classfly^+ approaches. Experimental results show that Classfly^+ can decrease the information loss and improve efficiency of k-anonymization.

同期刊论文项目
同项目期刊论文