A new efficient parallel finite-difference time-domain(FDTD) meshing algorithm, based on the ray tracing technique, is proposed in this paper. This algorithm can be applied to construct various FDTD meshes, such as regular and conformal ones. The Microsoft F# language is used for the algorithm coding, where all variables are unchangeable with its parallelization advantage being fully exploited. An improved conformal FDTD algorithm, also integrated with an improved surface current algorithm, is presented to simulate some complex 3D models, such as a sphere ball made of eight different materials, a tank, a J-10 aircraft, and an aircraft carrier with 20 aircrafts. Both efficiency and capability of the developed parallel FDTD algorithm are validated. The algorithm is applied to characterize the induced surface current distribution on an aircraft or a warship.
A new efficient parallel finite-difference time-domain (FDTD) meshing algorithm, based on the ray tracing technique, is proposed in this paper. This algorithm can be applied to construct various FDTD meshes, such as regular and conformal ones. The Microsoft F# language is used for the algorithm coding, where all variables are unchangeable with its parallelization advantage being fully exploited. An improved conformal FDTD algorithm, also integrated with an improved surface current algorithm, is presented to simulate some complex 3D models, such as a sphere ball made of eight different materials, a tank, a J-10 aircraft, and an aircraft carrier with 20 aircrafts. Both efficiency and capability of the developed parallel FDTD algorithm are validated. The algorithm is applied to characterize the induced surface current distribution on an aircraft or a warship.