位置:成果数据库 > 期刊 > 期刊详情页
一种新的拓展稀疏人脸识别算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华东交通大学理学院,南昌330013, [2]庐江县农业机械职业技能鉴定站,合肥231500
  • 相关基金:国家自然科学基金资助项目(61472138;61263032;11261018);江西省教育厅科研资助项目(GJJ14375;KJLD12067)
中文摘要:

如果每类训练样本较充分,基于稀疏表示分类可以取得比较好的识别效果;当训练样本比较少时,它的分类效果可能就不理想。拓展的稀疏分类算法可以较好地解决这一问题,它在表示测试样本时,引入了训练样本的类内变量矩阵,利用它和训练样本集来表示测试样本,从而提高了人脸识别率。然而,该算法并没有考虑训练样本在表示测试样本中所起的作用,即所有训练样本的权重都等于1。采用高斯核距离对训练样本加权,提出用加权的训练样本和类内散度矩阵来共同表示测试样本,即基于加权的拓展识别算法。实验证明所提算法能够取得更好的人脸识别效果。

英文摘要:

The sparse representation-based classification( SRC) can achieve the good recognition result if each class has sufficient training samples. The recognition result of SRC is not desirable if very few training samples per class are available. To address this problem,extended sparse representation-based classification( ESRC) applied the auxiliary intraclass variant dictionary and the training sample set to represent the test sample and could improve the face recognition performance. However,the algorithm did not consider the contribution of training samples in the representation of test sample. This paper used the weighted training samples which were weighted by the Gaussian kernel distance and the within-class intraclass matrix to jointly represent the test sample,and proposed algorithm called weighted extended sparse representation for classification algorithm( WESRC). Experiments show that the proposed algorithm can achieve better classification results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049