作者研究了相对宽度Kn(W2^a(T),MW2β(T),L2(T)),T={0,2π},确定了使等式Kn(W2^a(T),MW2β(T),L2(T))=dn(W2^a(T),L2(T))成立的最小M值,得到了相对宽度Kn(W2^a(T),W2^a(T),Lq(T))的渐近阶,其中α≥β>0,1≤q≤∞,Kn(·,·,Lq(T))和dn(·,Lq(T))分别表示Kolmogorov意义下Lq(T)尺度下的相对宽度和宽度,MWp^a(T),1≤P≤∞,表示有如下卷积表达式的2π周期函数类,f(t)=C+(Bα*g)(t),C∈R,Bα*g表示Bα和g的卷积,g∈Lp(T)满足.∫0^2πg(γ)dγ=0和,︱︱G︱︱p≤M,Bα∈L1(T)有如下Fourier展开:Bα(t)=1/2π∑′(iK)^-αe^1kt,∑′表示去掉k=0的项.
Abstract: The relative widths Kn(W2^a(T),MW2β(T),L2(T)),T={0,2π} , is studied and the smallest number M which makes the equality Kn(W2^a(T),MW2β(T),L2(T))=dn(W2^a(T),L2(T)) valid is obtained, and the asymptotic order of relative widths Kn(W2^a(T),W2^a(T),Lq(T))is obtained, where α≥β〉0,1≤q≤∞,Kn(·,·,Lq(T)) and dn(·,Lq(T))denote respectively the relative widths and the widths in the sense of Kolmogorov in Lq(T),and MWp^a(T),1≤P≤∞,denotes the collection of 2π-periodic and continuous functions f representable as a convolution f(t)=C+(Bα*g)(t),where Bα*g denotes the convolution of Bα and g, for g∈Lp(T) satisfying ∫0^2πg(γ)dγ=0 and ︱︱G︱︱p≤M. Here Bα is in L1(T) with the Fourie rexpansion Bα(t)=1/2π∑′(iK)^-αe^1kt,where ∑′means that the term is omitted when k=0.