位置:成果数据库 > 期刊 > 期刊详情页
Modeling Fiber Fineness, Maturity, and Micronaire in Cotton (Gossypium hirsutum L.)
  • ISSN号:0496-3490
  • 期刊名称:《作物学报》
  • 时间:0
  • 分类:S563.1[农业科学—作物学] TS102.211[轻工技术与工程—纺织工程;轻工技术与工程—纺织科学与工程]
  • 作者机构:[1]Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture~College of Agriculture, Nanjing AgriculturalUniversity, Nanjing 210095, P.R.China
  • 相关基金:funded by the National Natural Science Foundation of China (30771277 and 30771279)Acknowledgements This work was funded by the National Natural Science Foundation of China (30771277 and 30771279).
中文摘要:

Crop performance is determined by the combined effects of the genotype of the crop and the environmental conditions of the production system. This study was undertaken to develop a dynamic model for simulating environmental (temperature and solar radiation) and N supply effects on fiber fineness, maturity and micronaire. Three different experiments involving genotypes, sowing dates, and N fertilization rates were conducted to support model development and model evaluation. The growth and development duration of fiber fineness, maturity, and micronaire were scaled by using physiological development time of secondary wall synthesis (PDT SWSP ), which was determined based on the constant ratio of SWSP/ BMP. PTP (product of relative thermal effectiveness (RTE) and photosynthetically active radiation (PAR), MJ m-2) and subtending leaf N content per unit area (N A , g m-2) and critical subtending leaf N content per unit area (CN A , g m-2) of cotton boll were calculated or simulated to evaluate effects of temperature and radiation, and N supply. Besides, the interactions among temperature, radiation and N supply were also explained by piecewise function. The overall performance of the model was calibrated and validated with independent data sets from three field experiments with two sowing dates, three or five flowering dates and three or four N fertilization rates for three subsequent years (2005, 2007, and 2009) at three ecological locations. The average RMSE and RE for fiber fineness, maturity, and micronaire predictions were 372 m g-1 and 5.0%, 0.11 m g-1 and 11.4%, 0.3 m g-1 and 12.3%, respectively, indicating a good fit between the simulated and observed data. It appears that the model can give a reliable prediction for fiber fineness, maturity and micronaire formation under various growing conditions.

英文摘要:

Crop performance is determined by the combined effects of the genotype of the crop and the environmental conditions of the production system. This study was undertaken to develop a dynamic model for simulating environmental (temperature and solar radiation) and N supply effects on fiber fineness, maturity and micronaire. Three different experiments involving genotypes, sowing dates, and N fertilization rates were conducted to support model development and model evaluation. The growth and development duration of fiber fineness, maturity, and micronaire were scaled by using physiological development time of secondary wall synthesis (PDT SWSP ), which was determined based on the constant ratio of SWSP/ BMP. PTP (product of relative thermal effectiveness (RTE) and photosynthetically active radiation (PAR), MJ m-2) and subtending leaf N content per unit area (N A , g m-2) and critical subtending leaf N content per unit area (CN A , g m-2) of cotton boll were calculated or simulated to evaluate effects of temperature and radiation, and N supply. Besides, the interactions among temperature, radiation and N supply were also explained by piecewise function. The overall performance of the model was calibrated and validated with independent data sets from three field experiments with two sowing dates, three or five flowering dates and three or four N fertilization rates for three subsequent years (2005, 2007, and 2009) at three ecological locations. The average RMSE and RE for fiber fineness, maturity, and micronaire predictions were 372 m g-1 and 5.0%, 0.11 m g-1 and 11.4%, 0.3 m g-1 and 12.3%, respectively, indicating a good fit between the simulated and observed data. It appears that the model can give a reliable prediction for fiber fineness, maturity and micronaire formation under various growing conditions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《作物学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国作物学会 中国农业科学院作物科学研究所
  • 主编:万建民
  • 地址:北京海淀区中关村南大街12号中国农业科学院
  • 邮编:100081
  • 邮箱:zwxb301@caas.cn
  • 电话:010-82108548
  • 国际标准刊号:ISSN:0496-3490
  • 国内统一刊号:ISSN:11-1809/S
  • 邮发代号:82-336
  • 获奖情况:
  • 2002年-第三届中国科协优秀科技期刊二等奖,2002-2009年-百种中国杰出学术期刊,2004年获“全国优秀期刊一等奖”,2005年获第三届国家期刊奖提名奖,2009年评为“2008年度中国精品科技期刊”,2009年被评为“新中国60年有影响力的期刊”,2011年获"第二届中国出版政府奖期刊奖提名奖"
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:49369