位置:成果数据库 > 期刊 > 期刊详情页
A direct method for solving projected generalized continuous-time Sylvester equations
  • ISSN号:2095-6983
  • 期刊名称:《控制理论与技术:英文版》
  • 时间:0
  • 分类:O327[理学—一般力学与力学基础;理学—力学] O321[理学—一般力学与力学基础;理学—力学]
  • 作者机构:[1](Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, P. R. China)
  • 相关基金:Project supported by the National Natural Science Foundation of China (No. 11101149) and the Basic Academic Discipline Program of Shanghai University of Finance and Economics (No. 2013950575)
中文摘要:

An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,, λrof the matrix satisfy |λ1| |λr| and |λs| < |λs+1|(s r-1), then associated with any eigenvalue λi(i s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi/λs+1|q+1, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,, λs. A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.更多还原

英文摘要:

An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,……, λs of the matrix satisfy |λ1| ≤... ≤|λr| and |λs| 〈|〈s+1| (s ≤r-l), then associated with any eigenvalue λi (i≤ s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi|/λs+1|q+l, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,……,λs A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与技术:英文版》
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中科院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州市天河区五山路381号华南理工大学
  • 邮编:510640
  • 邮箱:jcta@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:2095-6983
  • 国内统一刊号:ISSN:44-1706/TP
  • 邮发代号:46-319
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引
  • 被引量:69