近年来大量风电场的并网给电网安全运行带来困难,为此电网调度部门对所辖风电场提出了严格的限发要求。变速风电机组需要从传统的最大风能利用运行模式向限功率运行模式转变,由于风力机功率特性具有强非线性,运行模式的改变对风电机组以及风电场的控制策略提出了更高的设计要求。提出了一种考虑风电机组限功率运行状态优化的风电场功率调度策略。首先,基于小扰动分析方法分析了限功率运行下风电机组非线性模型的稳定特性;然后,提出了一种限功率运行状态评价指标;接下来,建立了风电场功率调度多目标优化模型,并基于遗传算法设计了求解策略。最后,结合实际算例验证了所提调度策略的有效性。
In recent years,a large number of wind farms have been connected to grid which causes difficulty in maintaining secure grid operations,consequently,the dispatch centers often need to require the wind farms to limit their power output strictly.As a result,the operating mode of wind turbines and wind farm needs to be transferred from traditional maximum wind energy tracking to power limited operating conditions. However,given the strong nonlinear characteristics of the turbines,changing operating mode requires more complex control strategies for both the wind turbines and wind farms.A wind farm power optimum dispatching strategy,considering the wind turbine power limited operation conditions,is proposed.A small disturbance analysis method is adopted to analyze the stability for power limited operations.An assessment index is presented to evaluate the operating modes.A multi-objective optimization model is established using genetic algorithms. Numerical examples are given to validate the efficiency of the strategy proposed.