位置:成果数据库 > 期刊 > 期刊详情页
Speech emotion recognition based on statistical pitch model
  • ISSN号:0217-9776
  • 期刊名称:《声学学报:英文版》
  • 时间:0
  • 分类:O423[理学—声学;理学—物理] TN912.34[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]Department of Radio Engineering, Southeast University Nanjing 210096
  • 相关基金:This work was supported by the Doctoral Foundation of the Ministry of Education of China, the Foundation of Key Item of Science and Technology of the Ministry of Education of China (No.03082) and the National Natural Science Foundation of China (No.60472058).
中文摘要:

一个修改 Parzen 窗户方法,在低频率使分辨率高并且把光滑放在高频率,被建议获得统计模型。然后,当长句子被处理时,利用统计模型的一个性分类方法被建议,它有性分类的 98% 精确性。由男声音和女性表示的分离,与不同情感训练样品的讲话的平均数和标准差被用来创造相应情感模型。然后在测试样品和沥青的统计模型之间的 Bhattacharyya 距离,在沥青的 speech.The 正规化为情感识别被利用因为男声音和女声音也被考虑,以便说明他们直到一个一致空格。最后,讲话情感识别实验基于 K 最近的邻居显示出那, 81% 的正确的率被完成,在它仅仅是 73.85%if 的地方,传统的参数被利用。

英文摘要:

A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech. The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85% if the traditional parameters are utilized.

同期刊论文项目
期刊论文 103 会议论文 14
同项目期刊论文
期刊信息
  • 《声学学报:英文版》
  • 主管单位:
  • 主办单位:中国科学院声学所 中国声学会
  • 主编:
  • 地址:北京北四环西路21号
  • 邮编:100080
  • 邮箱:jsx@mail.ioa.ac.cn
  • 电话:010-62558329
  • 国际标准刊号:ISSN:0217-9776
  • 国内统一刊号:ISSN:11-2066/O3
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国应用力学评论
  • 被引量:47