在没有领域先验知识的条件下,不确定知识获取是机器学习研究中的一个难题.本文利用决策表和决策规则的不确定性,通过分析决策表、决策规则及概念格的知识表示形式,发现这3种知识表示形式中知识不确定性之间的关系,进而提出基于概念格的数据驱动不确定知识获取算法.仿真实验结果表明,该算法在不确定性知识获取中是有效的.
Uncertain knowledge acquisition is a problem when no prior domain knowledge is available. The relationship of knowledge uncertainties among three different knowledge presentation models, i.e. decision table, decision rule, and concept lattice, is discovered through analyzing their knowledge presentation styles. A data-driv algorithm based on concept lattice is developed by en automatic uncertain knowledge acquisition using this relationship. Experimental results show that this algorithm is valid for acquiring uncertain knowledge.