位置:成果数据库 > 期刊 > 期刊详情页
基于资源的协作过滤推荐算法研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]重庆邮电大学计算机科学与技术研究昕,重庆400065
  • 相关基金:国家自然科学基金( the National Natural Science Foundation of China under Grant No.60373111 ) ;重庆市自然科学基金(the Natural Science Foundation of Chongqing City of China under Grant No.2005BA2003);新世纪优秀人才支持计划;重庆邮电大学自然科学基金.
中文摘要:

协作过滤是当今应用最为普遍的个性化推荐算法,然而数据的稀疏性和算法的可扩展性一直是协作过滤算法所面临的两大问题。提出了一种新的推荐算法——基于资源的协作过滤算法。该算法在对资源项目依内容划分的基础上,将用户—项目评分矩阵转换为用户—资源类别评分矩阵,然后对用户聚类,在目标用户所在的簇中寻找其最近邻居并产生推荐。实验表明,该算法不仅降低了数据的稀疏性和维度,缩小了目标用户最近邻的查找范围,算法的扩展性得到了有效改善,而且提高了最近邻的准确度,推荐精度较以往传统算法有明显提高。

英文摘要:

Collaborative filtering is the most prevalent algorithm of personalized service,but there are always two difficult problems for collaborative filtering algorithms,that is,data sparsity and expansibility.In this paper,a collaborative filtering algorithm is proposed based on item category.On the foundation of classifying items,it converts rating matrix of user-item into user-category of item.And then it clusters users,finds the nearest neighbors of active users in the sub-clustering that the active users exist in.Finally,it recommends to active users.Experiments show that the proposed algorithm reduces the data sparsity and dimensionality, its recommendations are good,and the simultaneity and expansibility of the algorithm is improved effectively.

同期刊论文项目
期刊论文 36 会议论文 51 著作 3
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887