设M为闭极大三角代数S的σ-弱闭双边模且满足M增包含于S,证明了模M交换子C(A,M)=M.进而,如果M增包含于AlgLat S,得到H^n(S,AlgLat S)=H^n(S,M)(n≥1);若dimH⊥_≤1,则H^n(S,M)=0.
This paper shows that for any a-weakly closed bimodule M of a closed maximal triangular algebra S satisfying M lohtain in S, the commutant of S module M is M itself. Furthermore, the author proves that if M lohtain in AlgLat S, then H^n(S, AlgLat S) = H^n(S, M) (n≥1); and H^n(S,M)=0 if dim H⊥_≤ 1.