通过运用相应线性算子的第一特征值及其相关性质,以及不动点指数等理论,证明了分数阶微分方程边值问题{Dpx(t)+p(t)f(x(t))=0,0〈t〈1x(0)=x′(0)=0,x(1)=0至少存在一个正解,其中2〈p≤3是一个实数.
In this work, we proved the boundary value problem for fractional differential equation {Dpx(t)+p(t)f(x(t))=0,0〈t〈1x(0)=x′(0)=0,x(1)=0 eigenvalue of the relevant linear operator and fixed point index theory, where 2〈p≤3 is a real number.