受外界环境和仪器设备等的影响,实时水位观测数据流噪声和数据异常问题突出,严重制约了实时应用效能。针对已有数据清洗方法适应性差,难以根据动态观测数据的变化特征进行动态调整问题,本文提出了一种水文变化语义约束的实时水位观测数据流在线滤波方法:在实时水位观测数据变化特征与水文时空过程动态演变规律之间建立高层语义映射,实现水文变化语义知识约束下的卡尔曼模型参数自适应调整,从而突破传统滤波方法的瓶颈。采用多种降雨情景下的实时水位观测数据进行了试验,证明了该方法结果质量的可靠性。
Irregular environmental changes and occasional instrument malfunctions have made noises and exceptions in observational data prominence.Therefore,before processing real-time water level data online,data cleaning is urgently needed to ensure data quality.Since traditional data filtering methods didn't take the data change pattern into consideration,these methods have encountered some severe problems,including the poor adaptability of filter model,the low estimation precision and prohibitively high calculation cost.To overcome these shortcomings,this paper presents a hydrological change semantics constrained online Kalman filtering method:creating dynamic semantic mapping between real-time data changing pattern and the rules of spatialtemporal hydrological process evolution;implementing the change semantic constrained Kalman filtering method to support the adaptive parameter optimization.Observational water level data streams of different precipitation scenarios are selected for testing.Experimental results prove that by means of this method,more accurate and reliable water level information can be available.