定义图GP(n,t,k)有顶点集V(GP(n,t,k))={ui,vii∈Zn},边集E(GP(n,t,k))={uiui+1,uivi,vivi+t,uivi+ki∈Zn}.讨论了图GP(n,t,k)的自同构映射的性质,给出了它是点传递图的充分条件,进一步分别得到了GP(n,t,k)是Cayley图和拟Cayley图的充分条件.
The graphs GP(n,t,k) are tetravalent graphs with vertex-set,{ui,vi|i∈Zit} and edge-set {uiui+1,uivi,vivi+t,uivi+k|i∈Zn}.The automorphisms of these graphs are characterized,and the sufficient conditions for the graphs GP(n,t,k) to be vertex-transitive are obtained.Moreover,the sufficient conditions for the graphs GP(n,t,k) to be Cayley graphs and Quasi-cayley graphs are respectively given.