采用有限元动力时程稳定和变形分析方法,对不同高度大坝坝坡稳定进行分析,开展了最危险滑弧确定方法、地震动持时对稳定和变形的影响、滑弧位置和深度以及坝坡加固范围的研究。结果表明:拟静力法采用规范建议的加速度分布系数不能反映高土石坝实际地震反应规律,计算得到的最危险滑弧较深且滑动范围偏大,不利于确定坝坡的加固范围;坝坡在地震过程中,最小安全系数与最大滑动量对应的滑弧并不一致且是不断变化的,有限元动力法计算坝坡稳定时,应在每一时刻任意搜索最危险滑弧;地震持时对坝坡安全系数影响不大,但对滑动量有较大影响;不同滑弧深度对坝坡安全系数有较大影响,存在一个临界深度,当滑弧超过临界深度时,坝坡安全系数大于1.0;坝坡稳定安全性评价需要综合考虑安全系数与变形的计算结果。根据计算结果,建议了坝坡加固的范围。
By using the dynamic finite element stability and deformation method, the definite methods for the most dangerous sliding surface, the influences of seismic duration and depth of sliding surface on slope stability and deformation as well as the reinforcement range of dam slopes are studied. The results show that by means of the pseudo-static method, the slip circle corresponding to the minimum safety factor is deeper and the slip range is larger owing to the fact that the acceleration distribution coefficient suggested by the Chinese Code does not match the seismic response of dams. It is not helpful for determining the reinforcement range of dam slopes. During the earthquake history, the potential sliding surface varies with the time history, and it should be arbitrarily searched by using the dynamic finite element method. The potential sliding surface corresponding to the minimum safety factor is different from the maximum slippage. The estimation of the stability safety of dam slopes should combine the safety factor with the deformation. The reinforcement range of dam slopes is suggested according to the calculated results.