The integrability of the(2+1)-dimensional Broer-Kaup equation with variable coefficients(VCBK) is verified by finding a transformation mapping it to the usual(2+1)-dimensional Broer-Kaup equation(BK).Thus the solutions of the(2+1)-dimensional VCBK are obtained by making full use of the known solutions of the usual(2+1)dimensional BK.Two new integrable models are given by this transformation,their dromion-like solutions and rogue wave solutions are also obtained.Further,the velocity of the dromion-like solutions can be designed and the center of the rogue wave solutions can be controlled artificially because of the appearance of the four arbitrary functions in the transformation.
The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Thus the solutions of the (2+1)-dimensional VCBK are obtained by making full use of the known solutions of the usual (2+1)dimensional IRK. Two new integrable models are given by this transformation, their dromion-like solutions and rogue wave solutions are also obtained. Further, the velocity of the dromion-like solutions can be designed and the center of the rogue wave solutions can be controlled artificially because of the appearance of the four arbitrary functions in the transformation.