对于一个满足开集条件的自相似集E,本文得到如下有趣结论:如果E存在几乎处处最好覆盖{Ui)∞i=1,使得E-Ui≥1Ui是可数集,则E—E0是至多可数集,其中E0=(x∈E|Dcs(E,x)=1).作为应用,否定回答了周作领等在[周作领,瞿成勤,朱智伟.自相似集的结构——Hausdorff测度与上凸密度[M].北京:科学出版社,[2008]中提出的一个公开问题.
For a self-similar set E satisfying the open set condition,we prove an interesting result that if there exists an almost everywhere best covering {Ui)∞i=1 of E such that the set E-Ui≥1Ui is countable,then the set E--E0 is at most countable,where E0=(x∈E|Dcs(E,x)=1). As an applieation,we give a negative answer to the open problem posed by ZHOU Zuoling et. al in [ZHOU Zuoling, QU Chengqin,ZHU Zhiwei. The Structure of Self-similar Sets-Hausdorff Measure and Upper Convex Density. Beijing : Sci & Tec Press, 2008].