设X是一个紧致度量空间,f:X→X是一个连续映射,(X,f)是熵极小的.该文首先证明了f是强遍历的;另外,如果还假设X中存在f的一个真的(拟)弱几乎周期点,则得到f具有正拓扑熵且对任意的n〉1,f~n是遍历敏感依赖的.因此,f在Li-Yorke和Takens-Ruelle意义下是混沌的.该文所得结论改进和推广了最近的一些结论.
Let X be a compact metric space and f:X → X be a continuous map.In this paper,we prove that f is strongly ergodic if f is entropy-minimal.In addition,we show that f has positive topological entropy and f~n is ergodically sensitive for any n 1 if there exists a proper(quasi) weakly almost periodic point of f,hence f is chaotic in the sense of Li-Yorke and Takens-Ruelle.The presented results improve and generalize some recent results.