叶区域索引(LAI ) 是在植被分析和管理的一个关键参数,特别为山区。LAI 的精确检索基于遥感数据是很必要的。在在在 Gansu 省的 Heihe 分水岭的 Dayekou 森林中心的研究,我们基于 SPOT-5 的地志的修正决定了 LAI。除了当 orthorectification,放射刻度和大气的修正被使用时,在山地面的大变化要求了 SPOT-5 图象的预处理。这些要求了表面反射和几个植被索引和连接的获得回答测量 LAI 价值。统计回归模型被用来连接 LAI 和植被索引。在 LAI 和 SAVI (L=0.35 ) 之间的二次的多项式模型就 R 和 R2 价值而言作为最佳的模型被决定。一个秒组 LAI 数据被保留验证检索结果。模型被使用在区域创造 LAI 的一张分发地图。有一幅未改正的 SPOT-5 图象的比较证明地志的修正为在山区的 LAI 的决心是必要的。
Leaf Area Index(LAI)is a key parameter in vegetation analysis and management,especially for mountain areas.The accurate retrieval of LAI based on remote sensing data is very necessary.In a study at the Dayekou forest center in Heihe watershed of Gansu Province,we determined the LAI based on topographic corrections of a SPOT-5.The large variation in the mountain terrain required preprocessing of the SPOT-5 image,except when orthorectification, radiation calibration and atmospheric correction were used.These required acquisition of surface reflectance and several vegetation indexes and linkage to field measured LAI values.Statistical regression models were used to link LAI and vegetation indexes.The quadratic polynomial model between LAI and SAVI (L=0.35)was determined as the optimal model considering the R and R2 value.A second group of LAI data were reserved to validate the retrieval result.The model was applied to create a distribution map of LAI in the area.Comparison with an uncorrected SPOT-5 image showed that topographic correction is necessary for determination of LAI in mountain areas.