机体内的次氯酸(HClO)是由过氧化氢和氯离子在髓过氧化物酶(MPO)催化作用下产生。由于其在细胞的分化、迁移、传导和免疫等生理过程中起着非常重要的调控作用,因此对次氯酸的识别与检测有着非常重要的意义。荧光探针法具有灵敏度高、选择性好、检测限低、响应时间短、可视化检测和原位无损等优点,引起了科研工作者利用该方法对机体内次氯酸的研究兴趣。本文基于荧光探针与次氯酸的识别机制,主要综述了近三年用来识别次氯酸荧光探针研究进展。讨论了次氯酸荧光探针的设计策略、响应模式以及生物应用,并对次氯酸荧光探针的发展方向以及生物应用进行了展望。
Hypochlorous acid(HClO) is generated from hydrogen peroxide and chloridion via the catalysis of myeloperoxidase(MPO) in vivo.Normally,HClO acts as omnipresent intracellular regulator within life cycle of the cell,activating signaling pathways for cell differentiation,migration,transmission,proliferation and immune in physiological and pathological processes.Therefore,it is of vital importance to the detection and recognition of hypochlorous acid.Owing to simple operation,high sensitivity,sensitivity,low detection limit,rapid response,excellent spatial and temporal(spatiotemporal) resolution and especially nondestructive characteristics,Fluorescent probe technique has been paid special attention to research the physiological function of hypochlorous acid in vivo.Based on the recognition mechanism of fluorescent probes with hypochlorous acid,this review mainly summarizes the research progress of fluorescent probe for the recognition of hypochlorous acid in last three years.The design strategy of molecular structures and response pattern of these probes are also discussed as well as biological application.The development direction and biological application of hypochlorous acid fluorescent probes are also prospected.