A generalized hyperbolic perturbation method is presented for homoclinic solutions of strongly nonlinear autonomous oscillators,in which the perturbation procedure is improved for those systems whose exact homoclinic generating solutions cannot be explicitly derived.The generalized hyperbolic functions are employed as the basis functions in the present procedure to extend the validity of the hyperbolic perturbation method.Several strongly nonlinear oscillators with quadratic,cubic,and quartic nonlinearity are studied in detail to illustrate the efficiency and accuracy of the present method.
A generalized hyperbolic perturbation method is presented for homoclinic solutions of strongly nonlinear autonomous oscillators, in which the perturbation proce- dure is improved for those systems whose exact homoclinic generating solutions cannot be explicitly derived. The generalized hyperbolic functions are employed as the basis functions in the present procedure to extend the validity of the hyperbolic perturbation method. Several strongly nonlinear oscillators with quadratic, cubic, and quartic nonlinearity are studied in detail to illustrate the efficiency and accuracy of the present method.