位置:成果数据库 > 期刊 > 期刊详情页
薄膜横向振动的有限元分析
  • ISSN号:1000-4939
  • 期刊名称:应用力学学报
  • 时间:0
  • 页码:44-49+109
  • 分类:O175.25[理学—数学;理学—基础数学] Q141[生物学—生态学;生物学—普通生物学]
  • 作者机构:[1]Key Laboratory of Vibration Control and Structural Safety of Ministry of Education of China, Guangzhou University, Guangzhou 510405, P. R. China, [2]Department of Engineering Mechanics, Guangzhou University, Guangzhou 510405, P. R. China, [3]Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, P. R. China, [4]Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Nos. 10972240 and 11102045), the Natural Science Foundation of Guangdong Province of China (No. S20110400040), the Foundation of Guangdong Education Department of China (No. LYM10108), the Foundation of Guangzhou Education Bureau of China (No. 10A024), and the Research Grant Council of Hong Kong of China (No. GRF-HKU-7173-09E)
  • 相关项目:非线性振动系统双曲函数方法及其应用研究
中文摘要:

A generalized hyperbolic perturbation method is presented for homoclinic solutions of strongly nonlinear autonomous oscillators,in which the perturbation procedure is improved for those systems whose exact homoclinic generating solutions cannot be explicitly derived.The generalized hyperbolic functions are employed as the basis functions in the present procedure to extend the validity of the hyperbolic perturbation method.Several strongly nonlinear oscillators with quadratic,cubic,and quartic nonlinearity are studied in detail to illustrate the efficiency and accuracy of the present method.

英文摘要:

A generalized hyperbolic perturbation method is presented for homoclinic solutions of strongly nonlinear autonomous oscillators, in which the perturbation proce- dure is improved for those systems whose exact homoclinic generating solutions cannot be explicitly derived. The generalized hyperbolic functions are employed as the basis functions in the present procedure to extend the validity of the hyperbolic perturbation method. Several strongly nonlinear oscillators with quadratic, cubic, and quartic nonlinearity are studied in detail to illustrate the efficiency and accuracy of the present method.

关于陈树辉:

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用力学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:西安交通大学
  • 主编:陈宜亨
  • 地址:西安市咸宁西路28号西安交通大学
  • 邮编:710049
  • 邮箱:cjam@mail.xjtu.edu.cn
  • 电话:029-82668756
  • 国际标准刊号:ISSN:1000-4939
  • 国内统一刊号:ISSN:61-1112/O3
  • 邮发代号:
  • 获奖情况:
  • 国际工程索引(EI)及我国力学类核心期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8573