Bat SARS-like coronavirus (SL-CoV) has a genome organization almost identical to that of SARS-CoV, but the N-terminus of the Spike (S) proteins, which interacts with host receptor and is a major target of neutralizing antibodies against CoVs, of the two viruses has only 63-64% sequence identity. Although there have been reports studying the overall immunogenicity of SSL , knowledge on the precise location of immunodominant determinants for SSL is still lacking. In this study, using a series of truncated expressed SSL fragments and SSL specific mouse sera, we identified two immunogenic determinants for SSL . Importantly, one of the two regions seems to be located in a region not shared by known immunogenic determinants of the SSARS . This finding will be of potential use in future monitoring of SL-CoV infection in bats and spillover animals and in development of more effective vaccine to cover broad protection against this new group of coronaviruses.
Bat SARS-Iike coronavirus (SL-CoV) has a genome organization almost identical to that of SARS-CoV, but the N-terminus of the Spike (S) proteins, which interacts with host receptor and is a major target of neutralizing antibodies against CoVs, of the two viruses has only 63-64% sequence identity. Although there have been reports studying the overall immunogenicity of SsL, knowledge on the precise location of immunodominant determinants for SSL is still lacking. In this study, using a series of truncated expressed SsL fragments and SsL specific mouse sera, we identified two immunogenic determinants for SSL. Importantly, one of the two regions seems to be located in a region not shared by known immunogenic determinants of the SSARS. This finding will be of potential use in future monitoring of SL-CoV infection in bats and spillover animals and in development of more effective vaccine to cover broad protection against this new group of coronaviruses.