采用密度泛函理论研究了ZrO2负载的Ru基、Rh基以及Re改性的Rh基、Ir基催化剂上甘油氢解生成1,2-丙二醇和1,3-丙二醇的热力学过程, 重点考察了ReOx调变催化剂活性和选择性的作用机制. 结果表明, Ru/ZrO2和Rh/ZrO2催化剂上甘油分解经由脱水-加氢反应途径, 1,2-丙二醇的生成是热力学有利过程, 其中Ru基催化剂活性更高. 在Re修饰的Rh基和Ir基催化剂上, 反应遵循直接氢解机理, 其中金属表面解离的氢原子进攻ReOx团簇上与醇盐紧邻的C-O键是催化甘油转化为丙二醇最核心的步骤. Re-Ox-Rh/ZrO2催化剂上1,2-丙二醇为主要产物, 并伴随1,3-丙二醇的生成, ReOx的修饰则显著提高了Ir/ZrO2催化剂上1,3-丙二醇选择性. 与单金属催化剂上发生的间接氢解机理相比, 修饰催化剂上1,3-丙二醇选择性的提高可主要归因于Rh(Ir)-Re协同催化的直接氢解反应过程, 其中羟基化铼官能团有利于末端醇盐中间体的生成. ReOx-Ir/ZrO2催化剂上较大的Ir-Re团簇使得末端金属醇盐的立体优选性比次级醇盐更为突出, 从而具有最高的1,3-丙二醇选择性.
The thermodynamics of glycerol hydrogenolysis to produce 1,2-propanediol (1,2-PDO) and 1,3-propanediol (1,3-PDO) over Ru/ZrO2 , Rh/ZrO2 , ReOx -Rh/ZrO2 , and ReOx -Ir/ZrO2 were studied using density functional theory calculations, with a special focus on the mechanism controlling the activity and selectivity of the reactions. It is found that the decomposition of glycerol on Ru/ZrO2 and Rh/ZrO2 proceeds through a dehydration-hydrogenation mechanism. The formation of 1,2-PDO is thermodynamically favored, and the activity of the Ru-based catalyst is higher than that of the Rh-based one. In contrast, a direct hydrogenolysis mechanism is proposed for the Re-modified Rh and Ir catalysts, in which a dissociated H atom on the Rh(Ir) metal surface attacks the C-O bond neighboring the alkoxide species on the ReOx cluster. In the presence of ReOx -Rh/ZrO2 , the modified catalyst favors the production of 1,2-PDO, and 1,3-PDO production becomes competitive. However, the ReOx -Ir/ZrO2 catalyst significantly improves 1,3-PDO selectivity. The direct hydrogenolysis pathway, as opposed to the indirect hydrogenolysis mechanism for monometallic catalysts, may be the key to the high 1,3-PDO selectivity on the modified catalysts, where the hydroxylated Re group facilitates the formation of terminal alkoxide species rather than secondary alkoxides. Steric effects are important in preferential terminal alkoxide formation on the ReOx -Ir/ZrO2 catalysts because of the growth of large Ir-Re clusters, resulting in high selectivity for 1,3-PDO.