位置:成果数据库 > 期刊 > 期刊详情页
基于PSO优化RBF神经网络的反应釜故障诊断
  • ISSN号:1004-132X
  • 期刊名称:《中国机械工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江理工大学,杭州310018, [2]河南神火新材料有限公司,平顶山467500
  • 相关基金:浙江省自然科学基金资助项目(Y1110686)
中文摘要:

针对单一径向基函数(RBF)神经网络在反应釜故障诊断中泛化能力不足的缺点,设计了基于粒子群(PSO)算法优化的RBF神经网络。利用PSO算法操作简单、容易实现等特点及其智能背景,对RBF神经网络的参数、连接权重进行优化,并用经PSO算法优化的RBF神经网络对反应釜故障进行仿真诊断。仿真诊断结果表明,PSO算法优化的RBF神经网络具有较好的分类效果,较RBF诊断模型精度高、收敛快,具有推广应用价值。

英文摘要:

A new PSO algorithm with dynamically changing inertia weight and study factors based on improved adaptive PSO was proposed,where the inertia weight of the particle was adjusted adaptively based on fitness of the particle.The diversity of inertia weight made a compromise between the global convergence and local convergence speed,so it can alleviate the problem of premature convergence effectively.The algorithm was applied to train RBF neural network and a model of fault diagnosis for CSTR was established,compared with PSO algorithm,the proposed algorithm can improve the training efficiency of neural network effectively and obtain good diagnosis results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788