加权的吝啬的温度(T m ) 是为由信号路径的精明的能使沉淀的水蒸汽的最重要的变换参数之一在基于地面的 GPS 气象学的湿延期。这份报纸首先从数字方法相对 T m 的真价值为香港(HK ) 和联系错误统计讨论 T m 回归模型。结果证明在在为 HK 的年度、季节的 T m 回归模型之间的精确有小差别。Bevis T m-T s (表面温度) 回归模型比本地人当模特儿的对东北中国和 Qinghai 西藏的高原更合适。为历史的发出声音的数据的区域缺乏, Kriging 插值方法和 ECMWF 分析产品时代过渡期间被采用建立本地 T m-T s 模型。结果显示 T m 由数据由发出声音的数据,和 Kriging 插值方法与那与一致很好的时代过渡期间发源能成功地获得本地 T m-T s 模型的系数,建议这二来临可以在 T m 的获得和本地化用作有效方法。
Weighted mean temperature (Tin) is one of the most important conversion parameters for calculating precipitable water vapor by the signal path wet delay in ground-based GPS meteorology. This paper first discusses the Tm regression models for Hong Kong (HK) and the associated error statistics relative to the true values of Tm from the numerical method. The results show that there is little difference in precision between annual and seasonal Tm regression models for HK. The Bevis Tm-Ts (surface temperature) regression model is more suitable for northeastern China and the Qinghai-Tibetan Plateau than the local models. For areas lack of historical sounding data, the Kriging interpolation method and the ECMWF reanalysis product ERA-interim were employed to set up local Tm-Ts models. The results indicate that the Tm derived by the ERA-interim data coincides well with that by the sounding data, and the Kriging interpolation method can successfully obtain the coefficients of local Tm-Ts models, suggesting that these two approaches may serve as effective ways in the acquisition and localization of Tin.