不同尺度耦合会导致一些特殊的振荡行为,通常表现为大幅振荡与微幅振荡的组合,也即所谓的簇发振荡.迄今为止,相关工作大都是围绕光滑系统开展的,而非光滑系统中由于存在着各种形式的非常规分岔,从而可能会导致更为复杂的簇发振荡模式.本文旨在揭示存在非光滑分岔时动力系统的不同尺度耦合效应.以典型的含两个非光滑分界面的广义蔡氏电路为例,通过引入周期变化的电流源以及一个用于控制的电容,选取适当的参数使得周期频率与系统频率之间存在量级差距,建立了含不同尺度的四维分段线性动力系统模型.基于快子系统在不同区域中的平衡点及其稳定性分析,以及系统轨迹穿越非光滑分界面时的分岔分析,得到了不同余维非光滑分岔的存在条件及其分岔行为.重点探讨了余维-1非光滑分岔下的簇发振荡的吸引子结构及其产生机理,揭示了非光滑分岔下系统复杂振荡行为的本质.
The coupling of different scales in nonlinear systems may lead to some special dynamical phenomena, which always behaves in the combination between large-amplitude oscillations and small-amplitude oscillations, namely bursting oscillations. Up to now, most of therelevant reports have focused on the smooth dynamical systems. However, the coupling of different scales in non-smooth systems may lead to more complicated forms of bursting oscillations because of the existences of different types of non-conventional bifurcations in non-smooth systems. The main purpose of the paper is to explore the coupling effects of multiple scales in non-smooth dynamical systems with non-conventional bifurcations which may occur at the non-smooth boundaries. According to the typical generalized Chua’s electrical circuit which contains two non-smooth boundaries, we establish a four-dimensional piecewise-linear dynamical model with different scales in frequency domain. In the model, we introduce a periodically changed current source as well as a capacity for controlling. We select suitable parameter values such that an order gap exists between the exciting frequency and the natural frequency. The state space is divided into several regions in which different types of equilibrium points of the fast sub-system can be observed. By employing the generalized Clarke derivative, different forms of non-smooth bifurcations as well as the conditions are derived when the trajectory passes across the non-smooth boundaries. The case of codimension-1 non-conventional bifurcation is taken for example to investigate the effects of multiple scales on the dynamics of the system. Periodic bursting oscillations can be observed in which codimension-1 bifurcation causes the transitions between the quiescent states and the spiking states. The structure analysis of the attractor points out that the trajectory can be divided into three segments located in different regions. The theoretical period of the movement as well as the amplitudes of the spiking oscil