研究了复域差分φ1(z)=f(z+c)/(f(z))~k-a(f(z))~n andφz(z)=i=1Πf(z+c_i)/(f(z))~k-a(f(z))~n的值分布。从Nevanlinna理论的角度,我们得到了它们的一些性质。
In this paper,we investigate the value distribution of differenceφ1(z)=f(z+c)/(f(z))~k-a(f(z))~n and φ2(z)=i=1Πf(z+c_i)/(f(z))~k-a(f(z))~n.From the viewpoint of the Nevanlinna theory,we obtained some results in analogy with Picard Theorem.