位置:成果数据库 > 期刊 > 期刊详情页
基于柔性神经树模型的股票市场风险预测
  • ISSN号:1671-9352
  • 期刊名称:《山东大学学报:理学版》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]济南大学信息科学与工程学院,山东济南250022
  • 相关基金:基金项目:国家自然科学基金资助项目(69902005);山东省攻关计划资助项目(2008GG10001001)
中文摘要:

利用柔性神经树模型的改进结构优化算法对影响股票市场的过程参数进行筛选,在精确度较高的前提下在比较短的时间内找到影响股票市场风险的重要参数。在柔性神经树模型的学习过程中,该算法的进化代数不是一个固定值,而是以误差率来控制进化代数,试验证明此算法使模型最优,效率和精确度非常高。柔性神经树模型的结构和参数优化分别由概率增强式程序进化和模拟退火算法完成。研究结果表明该改进方法对预测股票市场风险是非常有效的。

英文摘要:

The improved structural optimization algorithm of the flexible neural tree model is employed to select the parameters for effecting stock market production. With higher accuracy and shorter time, important parameters which affect the risk of the stock market are found. In the period of learning of the flexible neural tree model, the evolution generation of the algorithm is not a fixed value and the mean error rate is utilized to control the evolution generation. The structure and parameters of the flexible neu- ral tree model are optimized by probabihstic incremental program evolution and simulation annealing, respectively. It has been demonstrated that the method is very effective for forecasting stock market risk.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:山东大学
  • 主编:刘建亚
  • 地址:济南市经十路17923号
  • 邮编:250061
  • 邮箱:xblxb@sdu.edu.cn
  • 电话:0531-88396917
  • 国际标准刊号:ISSN:1671-9352
  • 国内统一刊号:ISSN:37-1389/N
  • 邮发代号:24-222
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:6243