这份报纸由基因算法和禁忌搜索(GATS ) 从蛋白质数据银行(PDB ) 描述六个序列的 3D 蛋白质结构预言的案例研究,在离开格子 AB 模型被看作蛋白质结构的一个简化模型的地方。为形成蛋白质的本国的符合构造要求的低精力的价值被 GATS,然后粗糙的结构寻找(即,简化结构) 根据相应于最低精力的多重角度参数蛋白质被获得。所有粗糙的结构形成吸水的残余包围的单个恐水病的核心,它在蛋白质结构的实际特征的右边上留下来。它证明这条途径能有效地预言 3D 蛋白质结构。
This paper describes a case study of 3D protein structure prediction of six sequences from protein data bank (PDB) by genetic algorithm and tabu search (GATS), where off-lattice AB model is considered as a simplified model of protein structure. The lowest-energy values required for forming the native conformation of proteins are searched by GATS, and then the coarse structures (i.e., simplified structure) of the proteins are obtained according to the multiple angle parameters corresponding to the lowest energies. All the coarse structures form single hydrophobic cores surrounded by hydrophilic residues, which stay on the right side of the actual characteristic of protein structure. It demonstrates that this approach can predict the 3D protein structure effectively.