设计并研制出一种与普通单模光纤高适配的低弯曲损耗光子晶体光纤.结构采用光纤预制棒制作工艺上易于实现的掺锗芯六孔结构.应用间接测量方法,对其模式、弯曲及色散特性进行了系统的评估.在波长1550nm处研制光纤的模场面积为79.26μm2,色散为21.7ps·km-1·nm-1,模场面积和色散特性与标准单模光纤具有高的适配性.在光纤弯曲半径为5mm时,在波长1550nm处的弯曲损耗为0.0365dB/圈,小于G.657B的弯曲损耗0.5dB/圈.研究成果为光纤到户用低弯曲损耗光纤的实用化奠定了良好的基础.
A high-compatibility low-bending-loss photonic crystal fiber(PCF)with standard single mode fiber(SMF)is designed and manufactured successfully.From the point of the view of fiber fabrication and application,a feasible structure with a germanium-doped core surrounded by one layer of six air holes running along fiber axis is adopted in fiber design.The properties of the fabricated PCF such as modal property,bending characteristic and dispersion are systemically evaluated with indirect measurement method.Analysis results demonstrate that this fiber has a mode field area of 79.26 μm2 and dispersion of 21.7 ps·km-1·nm-1,which exhibits high compatibility with SMF.The bending loss is 0.0365 dB/turn at a wavelength of 1550 nm for a bending radius of 5 mm,which is less than the bending loss of 0.5 dB/turn of G.657B.This fiber offers an efficient way to develop the low-bending-loss fibers for the application of fiber-to-the-home.