本文系统分析了日本海郁陵海盆南部陆坡KCES钻孔48ka以来的古地磁、岩石磁学和沉积学性质。在已经报道的以AMS。4C测年、火山灰地层和特征深色层年龄模型上,以磁化率、非磁滞剩磁和饱和等温剩磁为归-参数的“地磁场强度”特征低值可以与北大西洋ODP983钻孔对比,方向可以与日本海和太平洋其他钻孔进行对比,强度年龄与之前年龄-致且更详细。48ka以来末次冰期(36-15kaB.P.)的磁性矿物输入最多,颗粒最细,软磁组分最高,末次冰期其他时段和冰消期、冰后期的磁性矿物输入降低,颗粒变粗,高矫顽力磁组分增加。岩石磁学的系统变化揭示早期成岩作用在7kaB.P.以来程度稍强,48-7kaB.P.作用较弱,不足以影响岩石磁学参数的环境记录。由于样品的不连续,末次冰期岩石磁学与千年冷暖事件的对应不明显,而在冰消期(15-11kaB.P.)海面急剧上升、全球温度变化剧烈的时期,岩石磁学参数表现为非常均匀的粗颗粒快速堆积,但是磁性矿物含量减少,软磁性组分也减少。此时陆源输入中的稳定元素Ti的相应变化暗示物质源区的变化和/或强劲水动力条件的筛选作用。与此同时,底流强劲并且方向多变,沉积物中砂和粉砂含量剧增都说明海底处于动荡和充氧的条件,与末次盛冰期时的分层海洋明显不同。因此,KCES钻孔的岩石磁学变化记录了陆源物质输入、底流演变和沉积后变化,这些都可能与著名的千年事件具有成因关系。
Identification of abrupt climate event at millennial scale from different angles is crucial to understanding the trigger and spreading process. Systematic paleomagnetic, rock magnetic and sedimentological analyses were undertaken in core KCES( 35°56. 150'N, 130°41. 915 'E ,water depth of 1463.8m, total length of 10.3m) of Ulleung Basin,Japan Sea for the last 48ka. On the age model based on AMS14C dating,tephra-chronology and characteristic dark layer TL2 reported previously, the " paleointensities" normalized by magnetic susceptibility, anhysteretic remanence and saturated remanence seem to correlate with intensity curve of core ODP 983 in North Atlantic and the inclination also agrees well with other cores in Japan Sea and the Pacific Ocean. On the new detailed paleointensity-assisted age,magnetic input in last glacial(36 - 15kaB. P. )is largest in concentration, finest in size and softest in coercivity for the last 48ka. Rock magnetic parameters reveal signals of early diagenesis stronger in the last 7ka and weaker in 48 -7kaB, P. Because of the un-continuity of the core below 4.5m( ca. 20kaB. P. ) due to drying, the response of rock magnetic to millennial events is uncertain before 20kaB. P.,but the deglacial transition is very peculiar in our results. Magnetic minerals which are coarse in size ,less in amount and low in low-coercivity proportion deposited. At the same time,Ti varies accordingly with rock magnetic parameters,reflecting changes of terrigenous input and/or dynamic winnowing. Stronger bottom current with varying directions revealed by anisotropy of magnetic susceptibility, increased sand and silt content indicate turbulent and oxygenated conditions at the sea floor, which is totally different with the stratified ocean in the last glacial maximum. The rock magnetic evolution in core KCES therefore has the potential to record changes of terrigenous input, bottom current and post-depositional modification which could correspond with the well known millennial events.