位置:成果数据库 > 期刊 > 期刊详情页
一种基于近邻传播算法的最佳聚类数确定方法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江南大学物联网工程学院, [2]理学院,江苏无锡214122
  • 相关基金:国家自然科学基金项目(60703106);中央高校基本科研业务费专项资金项目(JUSRP21012).
中文摘要:

在聚类分析中,决定聚类质量的关键是确定最佳聚类数,对此,从样本几何结构的角度定义了样本聚类距离和样本聚类离差距离,设计了一种新的聚类有效性指标.在此基础上,提出一种基于近邻传播算法确定样本最佳聚类数的方法.理论研究和实验结果表明,所提出的指标和方法能够有效地对聚类结果进行评估,适合于确定样本的最佳聚类数.

英文摘要:

It is crucial to determine optimal number of clusters for the quality of clustering in cluster analysis. From the standpoint of sample geometry, two concepts of sample clustering distance and sample clustering deviation distance are defined, and a new clustering validity index is designed. In addition, a method for determining optimal number of clusters based on affinity propagation clustering algorithm is proposed. Theoretical research and experimental results show that the proposed index and method can evaluate the clustering results effectively, and be suitable for determining optimal number of clusters.

同期刊论文项目
期刊论文 39 会议论文 11 专利 6
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961