位置:成果数据库 > 期刊 > 期刊详情页
量子粒子群优化算法的收敛性分析及控制参数研究
  • ISSN号:1000-3290
  • 期刊名称:物理学报
  • 时间:0
  • 页码:91-96
  • 语言:中文
  • 分类:TP393.01[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,无锡214122
  • 相关基金:国家自然科学基金(批准号:60474030); 江南大学科研基金(批准号:1055210322090270 1055211542080210)资助的课题
  • 相关项目:高可靠实时系统的计算平台(SoPC)研究
中文摘要:

通过分析粒子群优化算法的特点,将粒子放在量子空间来描述,建立粒子的量子势能场模型,并结合群体的群集性推导了量子粒子群优化(QPSO)算法.在随机算法全局收敛定理的框架下,讨论了QPSO算法的收敛性,证明QPSO算法是一种全局收敛的算法.针对QPSO算法的唯一控制参数,提出了三种控制策略,结合标准测试函数的仿真结果给出了具有实际指导意义的控制参数选择方法.

英文摘要:

Based on the analysis of particle swarm optimization algorithm,the particle is described in the quantum space and the potential energy field model is created. And then according to the swarm's gregariousness,the quantum-behaved particle swarm optimization ( QPSO) algorithm is derived. Within the framework of random algorithm's global convergence theorem,the convergence of QPSO algorithm is discussed and is proved to be a kind of global convergence algorithm. Three kinds of control strategy are proposed for the unique parameter of QPSO algorithm and they are tested on five benchmark functions. According to the test results,some conclusions concerning the selection of the parameter are drawn.

同期刊论文项目
期刊论文 39 会议论文 11 专利 6
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876