<正>A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed.It contains a differential transconductance low noise amplifier(Gm-LNA) and a differential current-mode 0 down converted mixer.The single terminal of the Gm-LNA contains just one MOS transistor,two capacitors and two inductors.The gate-source shunt capacitors,Cx1 and Cx2,can not only reduce the effects of gate-source Cgs on resonance frequency and input-matching impedance,but they also enable the gate inductance Lg1,2 to be selected at a very small value.The current-mode mixer is composed of four switched current mirrors.Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end.The RF front-end operates under 1 V supply voltage.The receiver RFIC was fabricated using a chartered 0.18μm CMOS process.The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point(IIP3) of-7.02 dBm.The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations.
A differential low-voltage high gain current-mode integrated RF front end for an 802.1 lb WLAN is proposed. It contains a differential transeonductance low noise amplifier (Gm-LNA) and a differential current- mode down converted mixer. The single terminal of the Gm-LNA contains just one MOS transistor, two capacitors and two inductors. The gate source shunt capacitors, Cx1 and Cx2, can not only reduce the effects of gate-source Cgs on resonance frequency and input-matching impedance, but they also enable the gate inductance Lgl,2 to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0. 18 μm CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of-7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations.