设(M,g)是带度量g的n维黎曼流形,p(x)〉1是M上的C^1光滑函数,本文证明了在一定的体积增长的条件下,M上关于变指数Laplace算子div(| u|……p(x)-2 )的弱极大值原理,并利用该极大值原理证明了相应于变指数Laplace算子的Liouville型定理.
noncompact volume was Laplace was A weak maximum principle for the variable exponent Laplace on a complete Riemannian manifold under suitable conditions about the growth of the established, by which a Liouville type theorem for the variable exponent proved.