位置:成果数据库 > 期刊 > 期刊详情页
基于随机森林的犯罪风险预测模型研究
  • ISSN号:1000-5641
  • 期刊名称:《华东师范大学学报:自然科学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:华东师范大学地理科学学院,上海200241
  • 相关基金:国家自然科学基金人才培养项目(J1310028)
中文摘要:

犯罪预测是犯罪预防的前提,也是公安部门亟待解决的问题.随机森林作为一种组合分类方法,具有准确率高、速度快、性能稳定的特性,且能够给出指标重要性评价,本文将其应用于犯罪风险预测中.实验证明,随机森林方法选出的指标集可以显著地提高预测准确率,基于该方法构建的预测模型相较于神经网络与支持向量机具有更高的准确性和稳定性,能够满足犯罪风险预测的需求.

英文摘要:

Crime prediction has always been an outstanding issue for public security department. Random forest is a combined classification method with high accuracy, high speed, and stable performance, which is suitable for solving the problem of predicting crime risk. In the meantime, this method can choose the index group for predicting crime risk more objectively. As proved by studies, the index group chosen by random forest method can significantly improve the accuracy of prediction, and the predictive model based of this method is more accurate and stable, so it can meet the demand of crime risk prediction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华东师范大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:华东师范大学
  • 主编:郑伟安
  • 地址:上海中山北路3663号
  • 邮编:200062
  • 邮箱:xblk@xb.ecnu.edu.cn
  • 电话:021-62233703
  • 国际标准刊号:ISSN:1000-5641
  • 国内统一刊号:ISSN:31-1298/N
  • 邮发代号:4-359
  • 获奖情况:
  • 中国综合性科技类核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:6600